
www.manaraa.com

INDIANA UNIVERSITYCOMPUTER SCIENCE DEPARTMENTTECHNICAL REPORT NO. 402Analyzing Data-structure Movements inMessage-Passing ProgramsSekhar R. SarukkaiRecom Technologies,MS 269-3, NASA Ames Research Center,Mo�ett Field, CA 94035-1000email: sekhar@kronos.arc.nasa.govphone: (415) - 604 - 4242 Jacob K. GotwalsDept. of Computer Science,Indiana University,Bloomington, IN - 47405email: jgotwals@moose.cs.indiana.eduphone: (812) - 855 - 9761March 1994
1

www.manaraa.com

AbstractIn this paper we show that the analysis of interprocessor data movement in terms of source-level data structures can be e�ective in performance debugging. We present a method for the lowoverhead run time monitoring of interprocessor communication in terms of data structures. We showhow performance indices based on postmortem analysis of the collected trace data can guide the userdirectly to the causes of poor performance.One of the most important decisions a programmer has to make in writing parallel programsis with regard to data structure distributions and alignments. Even so, there are very few perfor-mance tools which attempt to provide statistics or views of programs in terms of the data structureinteractions resulting from those alignments. Current tools for message passing programs providemechanisms for studying performance from the processor and function perspectives only. We demon-strate that our approach, based on postmortem analysis of trace �les augmented with data structureinformation, o�ers a rich set of performance indices and views that can be used to debug the perfor-mance of parallel programs.1 IntroductionTheoretically, current and future generations of distributed memory, massively parallel multicomputerscan provide the high level of performance required to solve the grand challenge computational scienceproblems. However, harnessing the power of these machines has proven elusive and successes have beenlaborious. This can be attributed to the programming paradigm involved (i.e. explicit message passing)compounded by the lack of useful performance tools to aid in the process of developing e�cient parallelprograms e�ciently.Recently there have been signi�cant e�orts toward developing parallel programming paradigmssupporting higher level abstractions of parallelism, such as in HPF [8] and pC++ [9]. These languagesprovide means for explicit speci�cation of data alignments and distributions. Though this approachlargely hides explicit message communication from the programmer, the programmer still makes theimportant decisions on how to distribute and align the various data structures to be operated on. Thesedecisions play a critical role in determining the nature and amount of communication performed duringprogram execution. To study the impact of these decisions on the program executions, performancetools that highlight the cost of data structure interactions are essential.Thus, if any sort of performance tool is to be useful in the context of either explicit message passingprograms or for higher-level languages such as HPF, it has to address the issue of isolating the perfor-mance of individual data structures and contextual data structure interactions. In this paper we addressthis issue for explicit message passing programs, while the approach can be extended for monitoring themovement of data in languages such as HPF as well.In recent years there have been a number of e�orts in providing software tools for debugging theperformance of programs. These tools can broadly be classi�ed into:2

www.manaraa.com

� Performance visualization tools such as [15, 13, 16, 7].� Performance tools centered on metrics, such as [11, 6, 1].� Expert systems for performance debugging [17].In the next section we discuss some tools which are centered on metrics. Then with the help ofa number of examples, we show how we can complement traditional performance indices centered onfunctions and processes, with a set of data structure indices that can be used to systematically guidethe programmer towards performance bottlenecks.1.1 Related WorkQuartz [1] is a tool for tuning parallel program performance on shared memory multiprocessors. Theprinciple metric of Quartz is the normalized processor time. This is the total processor time spent ineach section of the code divided by the number of other processors which are concurrently busy whenthat section of the code is being executed.IPS-2 [11] is a parallel performance tool which provides a set of system and application based metrics,by which program performance is debugged. Pro�le tables similar to the type of information presentedby the standard UNIX pro�ling tool Gprof[6] are provided. Critical path analysis is based on identifyingthe path through the program's execution that consumed the most time. The pro�le table lists actualamounts of time spent in selected phases of the computation and communication as well. The abovemetrics support isolation of a problem with respect to procedures, phases and processors.The most signi�cant di�erence between the above tools and the one described in this paper has todo with the tracking of interprocessor data movement. Previous tools present performance informationmainly in terms of processors and functions. But we have found that some of the most useful andintuitive information for tuning parallel program performance is information presented in terms ofsource level data structures. To our knowledge, our tool and methodology is the �rst to allow thee�cient tracking of interprocessor data movement in terms of source level data structures in distributedmemory parallel programs. This information on data movement is used to help the user determine thelocations and causes of performance bottlenecks.Further, once poorly performing sections of code have been identi�ed, most of the above tools do notprovide any feedback to the user about the possible causes of poor performance within those sections.This is a hard problem for distributed memory machines with message passing, since there are a numberof possible causes of poor performance. We provide a comprehensive set of performance indices thathighlight the signi�cance of many of the possible causes of poor performance.In this paper, we introduce a performance debugging methodology from a data structure perspective.This methodology helps in isolating data structures which have the most signi�cant interprocessorcommunication times. Our methodology identi�es a data structure pair for each communication: the3

www.manaraa.com

data structure being communicated, and the data structure using the communicated data. We highlightperformance problems in terms of these data structure pairs, with the help of a comprehensive set ofperformance indices.The concept of using data structure oriented views was incorporated into the MemSpy system [10].This tool provided a means of studying performance with respect to individual data structures, based ontracking individual data structure references for sequential and shared memory systems. The statisticswere primarily geared to determine the hit ratio of data structure references in cache and to provide apossible explanation for the same. Since this tool needs information regarding cache hits and misses,it was built on top of the Tango-lite simulator [4]. Our work di�ers from this work in a number ofsigni�cant ways.Firstly, we do not track every data use. Instead we track those which are potentially the mostexpensive: interprocessor data references, involving movement of data between processors. Further,with each such interprocessor data movement, we associate a sending (u) and using (v) data structure.This corresponds to communication of parts of data structure u, required to update the values of partsof data structure v not local to the sending processor. For message passing programs, determining thesedata structures involves the use of static
ow analysis.1Secondly, for a tool to be applicable to real problems (and for users to want to use it), it must runwithout signi�cant time and/or space overheads. To meet that requirement, our approach is based ontrace collection, rather than simulation. The traces are obtained by executions of the program directlyon the target multiprocessor.In keeping with the need for low penalty for tracking data movements, we have designed techniqueswhereby the overheads associated with tracking data structures are not signi�cantly larger than over-heads for generating traces without data structure information, as shown in section 3. In the programswe tested, the entire monitoring process (involving the monitoring of data structure information alongwith the monitoring of more standard information) had a maximum overhead of about 30% of theparallel execution time. In contrast, simulations of parallel programs are much more expensive, evenwithout monitoring, and take orders of magnitude more time than actual parallel execution times.Finally, data should be presented in a manner that enables programmers to readily detect thecause of poor performance. We present performance data in terms of indices which highlight commonperformance problems encountered in message passing programs, associated with interprocessor com-munication. This allows the user to easily determine the cause of performance problems associated withthe distribution and alignment of data, and to develop more scalable parallel programs.1Performance optimizations on parts of the code that do not involve interprocessor communication are also possible.These optimizations may also be assisted by the use of performance tools. However, we do not address that issue here.Instead, we concentrate on optimizations involving interprocessor communication. Once interprocessor communication hasbeen optimized, sequential performance tools are available to optimize local computations.4

www.manaraa.com

2 A Methodology for Automatically Tracking Data MovementOur approach to tracking data structure movements is built on top of methodologies and tools alreadyavailable for tracking message movements, in distributed memory programs.Typically there are 3 phases to be followed in trace based analysis of programs. First, the programis instrumented by inserting calls to appropriate monitoring routines at important locations in the pro-gram. Second, during the execution of the instrumented program, a monitor enables the collection ofrecords which signify the type and time of the occurrence of events, into a trace �le. Finally, post-mortem tools to display visualizations and statistics are used to comprehend and debug the program'sperformance.Figure 1 summarizes the steps involved in our method. Before compilation, a program restructuringtool (the instrumenter) is used to transform communication system calls into calls to the monitorlibrary. Input from a
ow analysis tool helps determine the data structures that are \important" interms of interprocessor communication. Those data structures appear as parameters to the monitorlibrary calls. At execution time, the monitor makes the intended communication calls, and generates atrace �le, augmented with codes for the important data structures. The monitor also outputs a lookuptable relating the data structure codes to the actual data structure names in the source code. Finally,postmortem analysis tools use the trace �le and the lookup table to present statistics and views ofthe execution. The data structure information allows the tools to display information in terms of datastructure interactions, as well as in more traditional formats.In our implementation, we restrict our focus to arrays in SPMD message passing FORTRAN pro-grams, on distributed memory multiprocessors. We consider only simple, point to point transfers ofdata. All monitored global operations (such as broadcast) are treated as a sequence of point to pointcommunications.Our model of interprocessor communication is as follows. Communication is required when a portionof an array (the source array) on one node is needed for a computation on another node. The portionof the source array to be sent may have to be copied into a temporary array (a \send bu�er") to put itinto contiguous memory before sending. The �nal destination for the data is a region of some array, thedestination array, on the receiving node. If the receiving region of the destination array is a contiguousblock of memory, then the data can be received directly into the destination array; otherwise, the datais received into a temporary "receive bu�er", then copied into the destination array. The destinationarray may then be used to compute values for another array, the using array, on the receiving node.In this section we will present the approach we follow at compile and execution time in trackinginterprocessor data structure interactions. Our goal is to automatically determine the identity of a pairof arrays for each communication, the sending and using arrays, and to make that array pair informationavailable to postmortem performance analysis tools.5

www.manaraa.com

"syncsend"

Monitor

timer

(type, time, ..., addr(buff))

"buff" addr(buff)

... ...

Postmortem
Analyzers

contention
index

array
pair

commn
overhead

a−>b

a−>c

..

...

.....

....

"csend"
"crecv"
...

"syncrecv"
...

Instrumenter

[In trace file]

Data structure Info

AddressName

commn_event

"csend"

...
"crecv"

Figure 1: A schematic of the data structure analysis system, showing interactions between the variouscomponents.2.1 Version 1: No Static AnalysisOur instrumenter implementation is built using the Sigma system [5]. Sigma parses the user's sourcecode, building an internal representation and performing data
ow analysis. We make calls to the Sigmalibrary routines, to analyze and instrument the user's code, and to output the instrumented version ofthe program.Consider a segment of a simple Single P rogram Multiple Data (SPMD) program whose datastructure movement has to be tracked. For simplicity, assume that the only important data structuresare arrays (as in F77). Figure 2 shows a segment of code where a part of array A is copied to a bu�erbuff which is then sent to another processor (using a call to csend), where it is received into a di�erentpart of bu�er buff , which eventually gets copied into array B.The �rst version of the algorithm that we follow during instrumentation, to track the data structureassociated with each communication call, is as follows (see Figure 1):� Replace the original communication call with a call to a monitor library routine.6

www.manaraa.com

� Detect the data-structure being communicated (which is a speci�c parameter to the originalcommunication call) and pass its name (as a string) and base address as additional parameters tothe library call.� At run time, the monitor performs three major functions:1. Obtains timestamps and stores communication event in local memory, which is periodically
ushed to the trace �le. (Communication events have �elds which signify the data-structurebeing communicated),2. perform the actual communication call, and3. output a data-structure look-up table, containing data-structure names and starting ad-dresses.� At analysis time, interpret the trace �le, using the data structure lookup table to relate the datastructure addresses in the trace �le to data structure names from the source code.In Figure 2 we show the result of the transformation to the communication calls after instrumen-tation. The instrumenter replaces the call to the communication routine by a call to a library routinewith two additional parameters: the name of the data structure and the starting address of the datastructure. For example, the csend is replaced by syncsend with two additional �elds.2.2 Version 2: Avoiding Problems with Bu�ersThe simple implementation discussed in the previous section, does not resolve the issue of the use ofcommunication bu�er arrays. If temporary bu�ers are used in the communication process, it is likelythat the names of the real data structures being communicated will not show up in the �nal statistics;the names of the temporary bu�ers will show up, instead. We would much prefer to have data structureinteractions labeled with the names of the actual data structures that are communicated. Furthermore,if bu�ers are reused, then separate data structures may be labeled with the same bu�er name; thenwhen performance information is tabulated by data structure name in the postmortem analysis, thismay lead to the presentation of misleading information. For these reasons, the previous version will notsu�ce.So for example, in the example considered in Figure 2, the statistics displayed by the analysistools will only show communications from buff to buff , when in reality, it was array A which wascommunicated to array B. To detect such situations automatically, we need to make use of staticprogram
ow analysis.To detect the case where the actual data structure is copied into a bu�er, we use the followingheuristic: if the closest reaching de�nition of the bu�er is a simple copy within a loop (as in theexample in �gure 3), then the array being communicated is considered to be a bu�er, and the array7

www.manaraa.com

subroutine foo ()

do i = 1, 10

buff(i) = A(i*n + p)
enddo

csend (.. , buff , ...)

crecv (.. , buff(11) , ...)

do i = 1, 10

B(i*n+p) = buff(i)

enddo

stop

end

syncsend (type , buff , size , to_proc , pid , buff ,

 "buff")

csend (type , buff , size , to_proc , pid)

syncrecv (type , buff , size , to_proc , pid , buff ,

 "buff")

crecv (type , buff , size , to_proc , pid) Figure 2: Transformation of communication calls during instrumentation. Top: the original program;Bottom: the communication call is replaced with a call to a monitor library routine with two additional�elds.from which the data is copied is the one we associate with the communication. A similar process isused on the receiving end; if there is a reaching use of the received array which is a simple copy withina loop, then the receive is associated with the array to which the data is copied, rather than the arrayin which the message is received. Thus, for the case considered in Figure 3, the send is associated withthe array A and the receive is associated with array B.With the above technique, postmortem analyzers can more accurately segregate data structureinteractions involving reused bu�ers, than in the previous case. In our implementation, the
ow analysisrequired is carried out by the Sigma library.2.3 Version 3: Tracking Use of Data StructuresTypically, data structure values are communicated to enable new values of a (possibly di�erent) datastructure to be updated, using the communicated values. Consider �gure 4. The program on the left isthe original, and the one on the right is the instrumented version. In this case, array A is communicatedso that parts of array C can be updated, using the communicated values. In order for the informationabout the use of the communicated data to be captured in the trace �le for postmortem analysis, we needto perform static
ow analysis to determine where the communicated data structure is being used. So,8

www.manaraa.com

subroutine foo ()

do i = 1, 10

buff(i) = A(i*n + p)

enddo

syncsend (.. , buff , ..., A, "A")

syncrecv (.. , buff(11) , ..., B, "B")

do i = 1, 10

B(i*n+p) = buff(i+11)

enddo

stop

endFigure 3: Communication calls with bu�er copies, after instrumentation. Actual data communicatedfrom A to B.we extend the analysis discussed so far to determine the next use of the actual receiving data structure.Figure 4 illustrates the program dependence information as arcs. Arcs are drawn between the locationsof de�nitions of data structures and corresponding statements which they reach. These dependence arcsare traversed by the instrumenter in determining the actual data structure being communicated.2.4 Version 4: Parameters to FunctionsWe would like to have a single name for each region of array storage in memory. A di�culty is thatarrays can be (and generally are) renamed when they are passed into subroutines as parameters. So wehave adopted the following array naming convention: arrays are named by the identi�er given them atthe original point of declaration. If the array is not originally declared in the main program, then itsname is pre�xed by the name of the subroutine where it is originally declared, followed by a period. Soan array x originally declared in the main program would be named x. An array x originally declaredin a subroutine f would be named f.x. If that array is passed into a subroutine g (from subroutine f) asformal parameter y, then we will still call that array f.x, because it was originally declared in subroutinef. The implementation of this approach, for static arrays in FORTRAN, is actually a fairly straightfor-ward extension of the implementation discussed so far. Instead of passing the array names with every9

www.manaraa.com

subroutine foo ()

do i = 1, 10

buff(i) = A(i*n + p)

enddo

csend (.. , buff , ...)

crecv (.. , buff(11) , ...)

do i = 1, 10

A(i*n+p) = buff(i)

enddo

stop

end

A:

subroutine foo ()

do i = 1, 10

buff(i) = A(i*n + p)

enddo

syncsend (.. , buff , ..., A)

 syncrecv (.. , buff(11) , ..., C)

do i = 1, 10

A(i*n+p) = buff(i)

enddo

stop

end

B:

do i = 1, N

enddo

C(i) = C(i) + A(i)

do i = 1, N

enddo

C(i) = C(i) + A(i)Figure 4: \Use" of communicated data. Left: Original program; Right: Instrumented program. Arcsshow that the communicated data comes from A, and is used by C.communication call, pass only the base addresses, and introduce a new monitor call to de�ne the arraynames in terms of the base addresses. The parameters to that call are the name and address of the arrayto be de�ned. The instrumenter should insert a call to this routine for each array name encountered inthe program, immediately following the declaration of that name. At run time, that monitor routinesimply accumulates the name/address pairs into a list, appending a pair to the end of the list with eachcall. That list then becomes the array name/address table output by the monitor. In the trace �le,arrays are coded by their address. At analysis time, when a array address is encountered in the trace�le, it is translated to a name by simply �nding the �rst matching address in the name/address table.The name corresponding to that �rst address is guaranteed to be the original name of the array, beforebeing passed to any subroutine, since arrays must be declared before being passed into subroutines(hence the name as originally declared would appear earlier in the name/address list).2.5 Additional FeaturesIn some cases, the receive is performed directly into the receiving data structure with no interveningbu�er. Handling this situation is not di�cult, but cannot be discussed in this paper due to spacelimitations. Our implementation is robust enough to detect these cases.Situations can arise that cannot currently be handled by the heuristic we use for identifying the10

www.manaraa.com

important data structures. The analysis performed by our implementation currently does not crossfunction boundaries, so we can identify bu�er copies only when they are performed in the same functionas the corresponding communication calls. 23 Performance of Our ImplementationUsing our approach, existing postmortem performance analyzers can be extended to track interprocessordata structure references and uses, with a very low additional overhead in storage requirements andexecution time.Existing postmortem performance analyzers such as AIMS [16] instrument the source code of theprogram being analyzed, replacing communication system calls with calls to a monitor library. Themonitor library subroutines perform the intended communication calls, appending timing and otherperformance information onto a trace �le. Other calls to the monitor library record information suchas times of subroutine entrances and exits.Using our approach, data structure information can be added to existing postmortem performanceanalyzers, with a storage overhead of just two integer �elds per communication-related trace record. Atmonitor time, in addition to the typical overheads due to monitoring, we incur overhead in maintainingthe data structure table. Table 1 shows execution times for several applications, instrumented severaldi�erent ways. The applications are a number of di�erent versions of a block tridiagonal solver, andone of the NAS parallel benchmarks. Execution times are given for each application (in msec) withoutinstrumentation and monitoring, with normal AIMS instrumentation and monitoring, and with theadditional instrumentation and monitoring that implement our data structure tracking method. Eachof the executions is for a single time step or iteration of the program. Procedure begins and ends and allcommunication events are monitored in the instrumented runs. The table shows that the time overheadfor adding data structure information to existing monitoring systems is less than 4%, and the timeoverhead for monitoring itself is less than 28%, for all the cases presented.Table 2 shows the di�erence in ASCII trace �le size for the instrumented applications discussedabove, in terms of number of �elds (counted by the standard unix utility 'wc'). This table illustratesthat the percentage increase in size for data structure tracing is not a function of trace �le size. Rather,it is a function of the percentage of communication events in the trace �le. In all cases in the table, thetrace �le size overhead for data structure tracing is less than 12%.The low overhead of our approach is made possible by the fact that we have singled out interpro-cessor data structure references for attention. This approach is reasonable, since interprocessor datareferences are several orders of magnitude slower than local references, and thus account for signi�cant2Note however that our method is not inherently limited to single procedure analysis; interprocedural analysis is justmore complex to handle. 11

www.manaraa.com

XT1 XT2 XT3 XT4 XT5 XT 7Un-instrumented 149 55 143 54 154 58Instrumented w/o D-str 180 64 182 61 158 60% Instrumenting overhead 21 16 27 13 2.5 3.4Instrumented w D-str 185 65 188 62 159 62% D-str overhead 2.7 1.6 3.3 1.6 .6 3.3Table 1: Execution times in msec for various versions of a tridiagonal solver (run on 16 nodes for aproblem size of 256� 256 for one iteration).XT1 XT2 XT3 XT4 XT5 XT7Instrumented w/o D-str 263624 35144 246298 33050 32456 13498Instrumented w D-str 294380 39020 275014 36678 35052 13796% di�erence 11.6 11.0 11.6 10.9 8.0 2.2Table 2: Trace �le size overhead for tracing data structure information, for various versions of a tridi-agonal solver (run on 16 nodes for a problem size of 256� 256 for one iteration).performance degradation. Tracking local data structure references (such as in Mtool [10]) is anotherpossible approach, which can yield information on local data structure performance (e.g. cache interac-tions between data structures), at the expense of signi�cant increases in execution time (for simulationbased analyzers), or trace �le size (for postmortem analyzers).All the above results are for relatively short executions, with the e�ect that there is no signi�cantperturbation of the program execution. As the number of events collected increases with increasingrun time, run-time perturbation may become more signi�cant. However, recently techniques have beenestablished to eliminate or reduce the e�ect of
ushes and monitor overheads (and hence perturbations)for SPMD programs, as discussed in [12, 14]. We have incorporated this methodology for perturbationcompensation into AIMS, but since it is beyond the scope of this paper we do not discuss it any further.4 Data structure Oriented Statistics and ViewsThe trace data collected on typical executions of a program is very large, and hence cannot be mean-ingfully understood by manually looking through the mire of numbers. Instead, tools are often usedto present statistics of the program as well as to graphically depict program executions, based on thetrace data. In this section we will describe some useful statistics that can be generated using the trace12

www.manaraa.com

data. In the next section we will consider some graphical representations.Statistics such as the communication and computation times can be tabulated by functions andprocessors. However, these raw numbers do not provide a uniform platform for comparing the perfor-mance of di�erent programs, or of di�erent versions of the same program. To circumvent this problem,a number of indices have been proposed, such as the communication/computation ratio, the normalizedCPU-time index and critical path analysis. All the above indices can be useful in identifying a bottle-neck's location, in terms of functions and processors. We will show that performance indices phrased interms of data-structures can be of further use in identifying the actual causes of the bottleneck, in termsof interprocessor data structure interactions, within the identi�ed function or processor. Furthermore,some bottlenecks related directly to data structures themselves can be most e�ciently tracked down by�rst considering statistics in terms of data structures, then in terms of functions and processors. Forexample, when poor performance is caused by poor combinations of data structure distributions, thepoor performance will be manifest across all functions and processors using those data structures. Inthose cases, statistics tabulated by processor and function may fail to clearly identify the location of,or even the existence of the performance bottleneck, since the performance degradation will be spreadacross the functions and processors involved.The aim of the performance tuning process is to minimize the total execution time (or lifetime) ofthe program. Hence, each of our indices highlights the contribution of a particular performance problemto the lifetime of the program; each index represents the percentage reduction in lifetime that couldbe achieved, if the problem were completely eliminated. By comparing the indices one can determinethe most signi�cant performance problems and determine ways of eliminating them from the program.With the methodology we describe, users can trace such problems directly to the source code datastructures being communicated.We take the following three step approach to the systematic detection of the cause of performanceproblems:� Select Data structure: Identify the data structure communications that cause the degradation inperformance.� Select code regions: Identify the function(s) in which those data structure communications havea signi�cant performance cost.� Determine cause of poor performance: Identify possible reasons for poor performance for the datastructure communications, in the regions of code identi�ed.Each step requires the use of various indices in order to focus on the cause of the problem.In this section we consider an example: a tridiagonal solver, which implements several methods forsolving systems of tridiagonal equations. This kernel operation is used commonly in a number of
uiddynamics computations such as a block tridiagonal solver (one of the NAS parallel benchmarks [2])13

www.manaraa.com

which solves multiple, independent systems of block tridiagonal equations. Our example program isexecuted on an Intel iPSC/860 hypercube with 16 nodes. All the statistics shown in this section arederived by the data movement analyzer, from trace �les generated during execution of the program onthe hypercube.This code was written by S. K. Weeratunga at NASA Ames Research Center. A complete descriptionof the application is beyond the scope of this paper, but we will brie
y discuss the nature of thecommunication and computation complexities involved in the program.In this program a number of systems of the form A � b = c are solved, where b and c are vectorsand A is a tridiagonal matrix. This data is organized e�ciently into four distributed arrays, whichrepresent the entire set of systems to be solved. The data is organized so that each processor does nothave the complete information regarding the N/P systems it is supposed to solve. For the computationto be performed, pieces of data from all the processors are required to be communicated (achieved byusing a transpose). A transpose of the four arrays are performed in log(p) stages using bidirectionalnearest neighbor communications, across successive hypercube dimensions, in sequence. The transposeis performed in the routine xtrans. This data is then used to solve the N=P systems locally, and the�nal solution vectors are transposed to correspond to the original distribution. This reverse transposeis performed in the routine xrtrans.4.1 Which Data Structure Interactions cause Poor Performance?As mentioned earlier, data structure interactions to enforce dependencies are the main reason for in-terprocessor communications. Typically, relative data distributions and alignments of data-structuressigni�cantly impact the performance of the program and dictate the communication-computation ratioin di�erent functions or subroutines in the program. Thus, identifying costly data-structure interactionsis a necessary �rst step in identifying the cause of poor performance.The relative importance of a data-structure can be gauged by considering the signi�cance of thetotal communication time involving the data-structure with respect to the entire program executiontime. That is, a data structure's signi�cance for performance debugging can be gauged by the fractionof total program execution time spent in communication involving that data structure, either as senderor receiver. We call this fraction the communication index.Tsend(d; �) corresponds to the sum over all processors of the times during which the processor isblocked while sending the data structure d to any receiving data structure (�). Similarly, Trecv(�; d) isthe total time blocked in receives into the data structure d from any data structure (�). Ttotal is thesum over all processors of the program execution time.CI(d) = Tsend(d; �) + Trecv(�; d)TtotalJust as we de�ne the communication index CI , we can de�ne send index and receive index to be14

www.manaraa.com

Figure 5: A: Communication index for individual data-structures that are communicated, in a versionof a tridiagonal solver. B: Communication index for data structure pairs: shows that data structuresare communicated to themselves (X-axis label).SI(d) = Tsend(d;�)Ttotal and RI(d) = Trecv(�;d)Ttotal respectively. Then, CI(d) = SI(d) + RI(d).Sending a segment of a data-structure involves bu�er copy and communication initiation times. Thistime is incorporated into the Tsend time of the data-structure being sent. Receiving into a data-structurecould have idle time (enforced by synchronization at the receiving end), the network latency, and bu�ercopy time. This time is incorporated into the Trecv time of the data-structure which uses the data beingsent.The data structure which generally should be tuned �rst is the one with the largest communicationindex, since the larger the communication index value, the larger the potential savings in execution timeachievable by the reduction of communications involving that data structure.Figure 5 shows the communication index of all the arrays, during the execution in our exampleprogram. The �gure shows that array f is the array with the largest communication index, roughlyaccounting for about 25% of the execution time of the program. Arrays a; b and c also have signi�cantcommunication indices accounting for a total of about 35% of the lifetime of the program. The two tem-porary arrays xtrans:tmp and xrtrans:tmp have very low communication-indices and hence optimizingtheir communications will not have a signi�cant impact on the program execution. For performance tobe improved, we need to study arrays f; a; b and c in that order.The indices de�ned so far have been in terms of single data-structures. But to detect problemsthat occur in communication between particular pairs of data structures, we require indices in terms15

www.manaraa.com

of data structure pairs. Hence we can de�ne a communication index for data structure pairs, thatencapsulates the performance cost of the communication of values from data-structure (ds), received bydata-structure (dr) as: CI(ds; dr) = Tsend(ds; dr) + Trecv(ds; dr)TtotalUsing the communication index of data structure pairs, we can focus in on the data structure interactionswhich have the most signi�cant impact on the lifetime of the program.Figure 5 (B) shows the communication index for array pairs. The X-axis corresponds to the arrayinteractions, showing sending and receiving arrays, and the Y-axis corresponds to the communicationindex. In this case, arrays are communicated to themselves (to perform a transpose); hence the sendingand receiving arrays match in all the array pairs, and the communication index is the same for individualarrays and for array pairs.4.2 Where does Costly Data-structure Interaction Manifest?Once we have determined the actual data-structures causing poor performance, we need to determinethe functions or code segments in which these data-structure communication times are most signi�cant.Instrumenting function entries and exits generally results in trace �les of acceptably small size (unlikeinstrumenting loops and basic-blocks), so instrumentation of function entries provides a convenientmeans of demarking important code segments. 3.As before with data structures, we use the communication index as a means of prioritizing the orderin which functions need to be studied. That is, the communication index for the data structure pair(with sending data-structure ds, and receiving data-structure dr) in function f is given by:CI(ds; dr; f) = T (f)send(ds; dr) + T (f)recv(ds; dr)TtotalFigure 6 shows the communication index of various array pairs across two functions. The �rst setof four indices correspond to array communications in function xtrans, while the last two representarray communications in xrtrans. (None of the other functions have any communication in them andare hence not displayed in this �gure.) It can be observed from this �gure that all the array paircommunications indeed take roughly the same amount of time. To determine how we can improve theperformance of these array interactions, we need to study various performance indices described in thenext subsection.3Finer level instrumentation can be automatically enabled by using suitable selections in the AIMS instrumenter [16].User de�ned blocks can be introduced and statistics of data-structure interaction in these blocks will also be reported.Further, linking the code segment to the data-structure interactions is possible, using the standard clickback facility inAIMS [16] 16

www.manaraa.com

Figure 6: Communication-index for data-structure pairs: in terms of individual functionsGiven the communication index values for array-pairs, tabulated over the whole program and overeach function/subroutine, we can quickly determine the communications which should be studied, andthe signi�cance of these communications with respect to the overall execution of the program. The nextstep is to determine if the performance of these data structure interactions can be improved.4.3 What is the Cause of Poor Data Structure Interaction?Some of the common causes for poor performance of parallel programs are:� Load imbalance� Poor Link utilization� Communication contention� Communication overhead� Bandwidth Utilization� Poor communication computation overlap.We de�ne indices for each of these factors, with a goal of identifying the cause of poor performance ina particular data-structure interaction. All the indices are presented with respect to individual data-17

www.manaraa.com

structures, data-structure pairs and data-structure pairs in individual functions or user-de�ned blocksof code. These indices are automatically generated and are all determined postmortem from trace data.The range of values for all the above indices is between zero and one: zero being good and one being bad.Having a normalized range for the performance indices helps in quickly tracking down the signi�cantfactors contributing to poor performance. In this paper, we will not discuss how we extract these indexvalues from the trace �le, due to space limitations. However, we will show how these statistics can helpin comprehending program performance.Figure 7 shows a summary view of all of our index values for each array pair in the tridiagonalsolver program. Each axis corresponds to a performance index. There are six di�erent performanceindices displayed in this �gure. A line is drawn connecting the corresponding values in each axis, foreach array pair interaction. If performance indices for some data structure interactions are the same,then the index values are marked on top of each other.Figure 7 (A), shows the performance indices for two bu�ers (both called tmp but local to two di�erentfunctions). From the �gure we can gather that the most signi�cant performance problem with thesebu�er movements is associated with communication overhead (the value of communication overheadin this plot is expressed as a fraction of the communication time between the two data-structures).This is due to the fact that these are temporary bu�ers used to transmit zero byte messages to setup a forced message communication of the actual arrays to be transposed. 4 Zero byte messages areused to set up links and bu�ers for the forced message containing the actual data to be communicated.The startup time is signi�cant with respect to the communication time of these messages. However,since the communication index involving these data-structures is very small, we know that reducing thecommunication time of the two bu�ers will have little or no signi�cant impact on the lifetime of theprogram.Figure 7 (B) on the other hand shows that the other arrays (a; b; c and f) do not have a communica-tion overhead problem, because their message sizes are large (in this case each message is approximately16 Kbytes). The �gure also indicates that the only performance related issue which could potentiallybe improved is the communication link utilization. As shown in the �gure, the link utilization indexis around 0.67. This implies that on the average, only about a third of the links are used duringcommunication phases.Hence, if there is any scope for improving the performance of this program, we need to reorganizethe code in order to more e�ectively utilize the links (if possible).Consider the algorithm for transpose, to understand why only a third of the links are used onthe average during communication. There are log(p) stages (p = 8) for performing a transpose. Theprocessors communicate by exchanging data along each dimension of the cube, one dimension at a time.4Forced messages are messages which exhibit better communication characteristics on the hypercube, by eliminatingthe need for lower level handshaking. 18

www.manaraa.com

Figure 7: Comparison of various performance indices for array interactions. A. Performance indices forarrays xtrans:tmp and xrtrans:tmp B. Performance indices for arrays a; b; c and f .Thus, each processor uses only one of its bidirectional links at any given time. This implies that for ap processor hypercube, there are only p=2 bi-directional links which will be used for each stage of thetranspose. That is, p�log(p)�p2 links are not in use. For a cube with 8 processors, the number of linksnot in use for each stage is therefore twice that in use. This agrees with the link utilization index, foreach data-structure, presented in the data-structure statistics.Another aspect of the performance of this code is highlighted by a large value for send-index (notshown in the graph). The large value for the send-index indicates that the copy time for the source-array from the user space to I/O space is signi�cant and signi�cant reductions in communication timescould be obtained by overlapping this copy time with useful computation. However, hardware supportis needed to hide this copy time.Unfortunately we cannot do better than the current performance of this program on the hypercubes(at NASA), since they do not have a communication co-processor to handle multiple communicationson di�erent links or overlap bu�er copy time with useful computation. This implies that this programperforms very well on the existing machine and its communication performance cannot be improvedsigni�cantly without hardware support. Any improvements in the solution time for the problem willhave to be made by modifying the algorithm.In addition to the statistics discussed above, graphical representations showing interprocessor datamovement can be useful for performance debugging. Figure 8 shows one such graphical view of theprogram with data structure information. This screen dump is a view of a run of the tridiagonal solver19

www.manaraa.com

Figure 8: A time-line diagram of the tri-diagonal solver, with data structure information indicated bythe color of the communication lines.on eight processors. The X axis corresponds to time and the Y axis corresponds to processors. Thestate of each processor over time is indicated by the color of the horizontal bar associated with thatprocessor. Interprocessor communication is indicated by lines between the communicating processors'bars. Data structure information is encoded in the color of the communication lines; all communicationsinvolving the same pair of sending and using data structures have the same color. For example, in thetridiagonal solver, the �rst 75% of the computation is dominated by communication. During this timefour di�erent arrays are transposed (each in log(p) = 3 stages); this is re
ected in the view by fourcommunication phases, each with a di�erent color. Encoding data movement information in views suchas this one provides the user with a richer data set to use in understanding program execution andperformance.The examples in this section were primarily used to demonstrate the
exibility of our methodologyand to illustrate the detailed statistics that are generated for array interactions in Fortran programs.We have shown that with little additional space and time overhead at run time, it is possible to collectdata that can be used to de�ne a whole class of performance indices which can help in pinpointing thedata structures with poor performance in speci�c functions, as well as in determining the causes of poorperformance within those functions.4.4 A Pipelined Version of Gaussian EliminationIn this section we consider a di�erent version of the tridiagonal solver executed with a problem size of256 � 256 on 16 processors. Here, instead of an explicit transpose of various matrices, the Gaussianelimination phase of the computation is parallelized. A pipelined Gaussian elimination algorithm is used20

www.manaraa.com

Figure 9: Left: Communication time and communication index for varying block sizes of communicationfrom data structure sbuf to rbuf . Right: Send and receive indices for communication of sbuf to rbuf .Receive index increases more than send index.for this purpose. Pivot elements of each column are determined in sequence and these values are usedfor updating succeeding columns. Processor i has the columns (i�1)�np to i�np . Processors are arrangedin a ring, so that each processor receives the updated pivot element from its left neighbor, updates itsown column, and then transmits the data to its right neighbor.There are a number of decisions that need to be made with respect to communicating the arraysaround the ring, in order to obtain good performance. One obvious optimization is to pack the pivotelements from all the arrays into a single message (called sbuf on the sending end and rbuf on thereceiving end), thus reducing the number of messages to be transmitted. With this optimization, thenumber of pivot elements that need to be transmitted in a message governs the execution time of theprogram. The number of pivots from each array, in each message from sbuf to rbuf , is the block size,which can range anywhere from 1 to 256. The maximum block size of 256 corresponds to all pivotupdates of all arrays being sent in a single message from sbuf to rbuf . So as we increase the block sizefrom 1 to 256, the number of messages reduces from 256 messages to a single message.Consider Figure 9, which shows the communication time and the communication index of the pro-gram as the number of pivots transmitted in a message is increased. An interesting feature is that thecommunication time starts to decrease initially as the block size is increased, but when the block sizeis increased above 4, the communication time starts to increase again. By analyzing the trace �les forvarious block sizes, we should be able to explain the reason for this performance problem automatically.21

www.manaraa.com

Figure 10: Performance indices for communication from sbuf to rbuf : For small block sizes, commu-nication overhead, contention and load-imbalance are all signi�cant issues, while for large block sizes,load-imbalance becomes signi�cant.Figure 9 compares the send index and receive index for varying block sizes. We see that the receiveindex reduces for block sizes from 1 to 4, but starts increasing beyond that, while the send index reduces(though not in proportion to the receive index) for increasing block sizes. This suggests that a problemin the receiving end becomes signi�cant as the block sizes are increased.The reason for this behavior is exposed by the performance indices used for studying the data-structure interactions. These indices show that load imbalance, communication overhead and contentionare the most signi�cant performance factors for this program. Figure 10 compares these indices fordi�erent block sizes. (The values of these performance indices, for this data-structure interaction, areobtained automatically from the trace events by the data movement analyzer, and will be described ina future paper.) We can see in this �gure that for a block size of 4, all the indices have low values,beyond which the load-imbalance increases while the other indices continues to decrease. This increasein load imbalance index indicates that the receive into rbuf is initiated before the communication ofsbuf is initiated, resulting in larger idle times (and hence larger receive index values shown in Figure9). This results in an imbalance where processors have completed their work and are idling for data22

www.manaraa.com

dependencies to be satis�ed, before proceeding. When the block size is 4, a delicate balance betweenthe communication overhead and idle times in processors has been achieved, for this problem size andnumber of processors, resulting in the lowest execution time for the program.5 ConclusionWhile it has long been understood that improving performance of a parallel program is dependenton understanding the communication characteristics of data structure interactions, there have beenvery few tools that provide means of studying program performance in terms of these interactions.In this paper, we have presented a novel scheme for generating such statistics automatically, throughinstrumentation, monitoring and postmortem analysis.We detect data structure de�nitions and uses with the help of static
ow analysis (without the needfor inter-procedural analysis). This information, supplemented with some run time information, enablesthe generation of trace data tracking data movements, with minimal additional time overhead at runtime. This data is then interpreted postmortem by a suite of graphical and statistical tools that outputinformation with respect to source code data structures.With the help of several examples, we have demonstrated that performance can be e�ectively ana-lyzed by tabulating performance indices based on data structure interactions. The performance indiceshide raw numbers from the application developers, instead highlighting the signi�cance of various per-formance problems to the reduction of the program's lifetime. The causes of performance degradationare attributed to speci�c data structure pairs. This enables programmers to identify ways to rearrangethe code and/or algorithm to eliminate the performance problem, or to change the alignments anddistributions of the relevant data structures, in order to improve performance.There are still a number of issues which are areas of on-going research: currently our implementationdoes not obtain information about the speci�c array subsections that are actually sent when commu-nication takes place. This information may be essential for determining the applicability of certaintypes of communication optimizations: for example, the replacement of all to all communications witha broadcast. We have implemented our approach for F77 with message passing and static data struc-tures; we have not yet considered some more complex issues that arise in e�ciently tracking dynamicdata structures. We are currently testing our approach and the robustness of our implementation onlarger applications, and hope to present our experiences with these codes at a later date.References[1] Thomas E. Anderson and Edward D. Lazowska, " Quartz: A Tool for Tunning Paralel ProgramPerformance," Proceedings of the 1990 Conference on Measurement and Modeling of ComputerSystems, May 1990. 23

www.manaraa.com

[2] David Bailey, John Barton, Thomas lasinski and Horst Simon, " The NAS Parallel Benchmarks,"Report RNR-91-002, NASA Ames Research Center, January 1991.[3] S. H. Bokhari, " Communication Overhead on the Intel iPSC/860 Hypercube," ICASE InterimReport 10, May 1990.[4] H.Davis, S.R. Goldschidt and J. Hennessy, "Tango: A Multiprocessor Simulation and TracingSystem," Proceedings of the International Conference on Parallel Processing, August 1991.[5] D. Gannon, J.K.Lee, B. Shei, S.R.Sarukkai, S.Narayana, N.Sundaresan, D.Atapattu, F.Bodin, \SigmaII: A toolkit for Building Parallelizing Compilers and Performance Analysis Systems ," ,Proceedings of the Programming Environments for Parallel Computing Conference, Edinburgh,April 1992.[6] S. L. Graham, P.B. Kessler and M. K. McKusick, " An Execution Pro�ler for Modular Programs,"Software Practice and Experience, August 1983.[7] Michael T. Heath, Jennifer A. Etheridge, \Visualizing the Performance of Parallel Programs,"IEEE Software, September 1991.[8] High Performacne Fortran Forum, " High Performance Language Speci�cation," Rice University,1993.[9] Jenq Kuen Lee and Dennis Gannon, "Object Oriented Parallel Programming Experiments andResults," Proceedings of Supercomputing '91, 1991.[10] Margaret Martonosi and Anoop Gupta, " MemSpy: Analyzing Memory System Bottlenecks inPrograms,"Proceedings of the 1992 ACM International Conference on Measurement and Modelingof Computer Systems, June 1992.[11] Barton P. Miller, Morgan Clark, Je� Hollingsworth, Steven Kierstead, Sek-See Lim and TimothyTorzewski, "IPS-2: The second Generation of a Parallel Program Measurement System," IEEETransactions on Parallel and Distributed Systems, April 1990.[12] Sekhar R. Sarukkai and Allen Malony, " Perturbation Analysis of High Level Instrumentationof SPMD Programs, Fourth ACM SIGPLAN Symposium on Principles and Practice of ParallelProgramming, San Diego, May 1992.[13] Sekhar R. Sarukkai and Dennis Gannon, "SIEVE: A Performance Debugging Environment forParallel Programs," Journal of Parallel and Distributed Computing, June 1993.[14] Sekhar R. Sarukkai and Jerry Yan, "Integration of Perturbation Compensation and ApplicationMonitoring Tools for Message Passing Parallel Porgrams," Submitted to IEEE Transactions onParallel and Distributed Systems 24

www.manaraa.com

[15] Eileen Kraemer and John T. Stasko, " The Visualization of Parallel Systems: An Overview,"Journal of Parallel and Distributed Computing, June 1993.[16] Jerry Yan, Charles Fineman, Phil Hontalas, Melisa Schmidt, Sherry Listgarten, Pankaj Mehra,Sekhar Sarukkai and Cathy Schulbach, " The Automated Instrumentation and Monitoring System(AIMS) Reference MAnual," NASA Ames Research Center, June 1993.[17] \UNICOS Performance Utilities Reference Manual," Cray Research Inc., 1991.

25

